

Survey Project on CO₂ Emission Reduction Effects of Buildings by ZEB in ASEAN Countries

April 12, 2022 Ichinose Laboratory Department of Architecture Faculty of Urban Environmental Sciences Tokyo Metropolitan University

Contents

- 1. CO₂ Emissions and Actual Energy Regulations of Buildings
- 2. Indoor Environment and Actual Energy Consumption of Buildings
- 3. Comparison of Climate Characteristics
- 4. Prediction of Reduced Environmental Load by Dissemination of ZEB Family
- 5. Summary

Contents

- 1. CO₂ Emissions and Actual Energy Regulations of Buildings
- 2. Indoor Environment and Actual Energy Consumption of Buildings
- 3. Comparison of Climate Characteristics
- 4. Prediction of Reduced Environmental Load by Dissemination of ZEB Family
- 5. Summary

1. CO₂ Emissions and Actual Energy Regulations of Buildings

CO₂ emission per capita by country ¹⁾

Since the 1950s, CO₂ emission per capita has been increasing in the Southeast Asian Countries.

 Climate Watch (CAIT): Country Greenhouse Gas Emission Data, World Resources Institute, https://www.wri.org/data/climate-watch-cait-country-greenhouse-gas-emissions-data, Accessed on 2022/2/24

1. CO₂ Emissions and Actual Energy Regulations of Buildings

CO₂ emission by sector ¹⁾

If CO₂ emissions in each country are classified by sector, those related to architecture account for about 30 to 40% of the total.

It is considered contributive to establishing a sustainable society to positively introduce energy conservation technologies into buildings.

 Climate Watch (CAIT): Country Greenhouse Gas Emission Data, World Resources Institute, https://www.wri.org/data/climate-watch-cait-country-greenhouse-gas-emissions-data, Accessed on 2022/2/24

Energy conservation countermeasure in each country

Country	Energy conservation standards	Evaluation method
Japan	5) JSBC: CASBEE for Building	Evaluated by BEE = Environmental quality of building / Environmental load of building. Evaluated higher as BEE increases. There are many evaluation items. Energy consumption is evaluated in terms of BPI (ratio of standard PAL* to design PAL).
	ZEB ⁶⁾ 6) ZEB PORTAL, Ministry of the Environment: Definition of ZEB	Evaluated in terms of BEI (ratio of standard primary energy consumption to design primary energy consumption). Evaluated higher as BEI decreases.
Singapore	Green Mark ⁷⁾ 7) Building and Construction Authority: GREEN MARK 2021	Evaluated based on the score of 5 items related to an energy consumption reduction rate compared with the energy conservation standard model enacted in 2005 and sustainability. Achieve GoldPLUS at 50% reduction of energy consumption, Platinam at 55%, and SLE at 60%, respectively.
Thailand	TREES ⁸⁾ 8) TGBI: Thai's Rating of Energy and Environmental Sustainability (2017)	Evaluated with the total score of 8 items related to sustainability. For energy consumption, points are added based on a reduction rate compared with Energy Star Portfolio Manager . Energy Star Portfolio Manager is the U.S. standards.
Malaysia	Green Building Index ⁹⁾ 9) GREENBUILDINGINDEX SDN BHD: Green Building Index for NRNC (2009)	Evaluated based on the total score of 6 items related to sustainability. For energy consumption, points are added every time secondary energy consumption is reduced by 10 kWh/m ² ·year on the basis of 150 kWh/m²·year .
Indonesia	GREENSHIP ¹⁰⁾ 10) GREEN BUILDING COUNCIL INDONESIA: GREENSHIP (2013)	Evaluated based on the total score of 6 items related to sustainability. For energy consumption, one point is acquired at every 2.5% reduction from the baseline model, assuming 10% reduction therefrom as a minimum requirement. The baseline model shall be annual energy consumption of the model in line with the standards enacted by MoPW (Indonesian Ministry of Public Works).
Vietnam	LOTUS ¹¹⁾ 11) VGBC: LOTUS New Construction V3 Technical Manual (2019)	Evaluated based on the total score of 6 items related to sustainability. For energy consumption, one point is acquired at every 2.5% reduction from the baseline model, assuming 10% reduction therefrom as a minimum requirement. The baseline model shall be annual energy consumption of the model designed based on LOTUS Guideline .

1. CO₂ Emissions and Actual Energy Regulations of Buildings

The following shows the energy conservation standards in each country converted into secondary energy consumption.

Targeted secondary energy in each Energy Conservation Countermeasure

The following shows CO₂ intensity in each country (volume of CO₂ emitted at every power generation of 1 kWh).

12) Institute for Global Environmental Strategies: IGES List of Grid Emission Factors (2022)

13) Tokyo Electric Power Company Holdings, Inc.: CO2 emission, emission intensity and electricity sales

https://www.tepco.co.jp/corporateinfo/illustrated/environment/emissions-co2-j.html (Accessed on 2022/3/14)

The following shows the energy conservation standards in each country converted into CO_2 emissions. The energy conservation standards and CO_2 intensity mentioned on the previous pages are used for calculations.

Targeted CO2 emission in each Energy Conservation Countermeasure

Contents

- 1. CO₂ Emissions and Actual Energy Regulations of Buildings
- 2. Indoor Environment and Actual Energy Consumption of Buildings
- 3. Comparison of Climate Characteristics
- 4. Prediction of Reduced Environmental Load by Dissemination of ZEB Family
- 5. Summary

City	Jakarta	Hong Kong	Singapore							Hanoi			
		Kong											
Office	JK-1	HK-1	SG-1	SG-2	SG-3	SG-4	SG-5	SG-6	HA-1	HA-2	HA-3	HA-4	HA-5
Age	1993	2010	2014	1985	2014	2003	2014	2015	2010	2009	2002	2013	2009
Total stories	22	118	9	42	5	5	20	6	23	27	19	25	27
Measured floor	17	19	4	31	3	2	5	6	22	5	14	22	7
A/C type	Cent	Cent	Cent	Cent	Cent	Cent	Cent	Cent	Indi	Cent	Both	Both	Indi
GFA [m ²]	27000	260200	8667	81756	- 1	8408	31360	5516	28000	22518	34640	61400	40000
Measured area	843	484	550	879	360	1060	1761	565	981	436	1224.5	1684	840
Number of the	74	41	31	88	22	38	186	51	36	40	54	152	35
occupants													
Ducinose time	9:00-	9:00-	8:30-	8:30-	8:30-	8:30-			8:00-	8:00-	8:00-	8:00-	8:00-
Business time	17:00	18-00	17:00	17:30	17:30	17:30			18:00	18:00	18:00	18:00	18:00
Investigation	Sep2017	May2018	Oct2017	Nov2017	Mar2018	Mar2018	May2018	May2018	May2015	May2015	May2015	May2015	May2015
City		Taipei			й			Ban	gkok				
Office	TP-1	TP-2	TP-3	BK-1(17)	BK-2	BK-3	BK-4	BK-5	BK-6	BK-1(18)	BK-7	BK-8	BK-9
Age	-	2014	2014	2014	1992	2011	1985	1989	2016	2014	2011	2008	2015
Total stories	12	23	23	22	31	41	19	20	5	22	27	48	25
Measured floor	10	17	17	17	28	36	14	7	4	17	17	32	11
A/C type	Indi	Indi	Indi	Cent	Cent	Cent	Cent	Cent	Cent	Cent	Indi	Cent	Cent
GFA [m2]	9158	42712	42712	27720	194655	161285	24300	41500	6961	27720	64558	97094	56000
Measured area	544.7	967.7	1063	778	411	1090	1212	1100	1465	778	290	492	950
Number of the	62	61	61	85	37	142	53	107	190	85	65	75	140
occupants													
Business time	9:00-			8:00-	8:00-	8:00-	9.00-	9.00-	8:00-	8:00-	8:00-	8:30-	8.30-
	18:00			18:00	18:00	17:00	18.00	17.00	18:00	18:00	17:00	17:30	17.30
Investigation	Sep2016	Jun2018	Jun2018	Mar2017	Mar2017	Jul2017	Jun2018	Jun2018	Sep2018	Sep2018	Mar2019	Mar2019	May2019

Target Office Building for Investigation

Operative Temperature Distribution in Actual Status

The indoor temperature tends to be low in Bangkok and Singapore, and slightly high in Hong Kong, Taipei and Hanoi. It is likely to be subjected to climate characteristics and customs.

Frequency of Symptom Derived from Excessive Cooling

Yearly Energy Consumption of Baseline and Actual

- An internal heat generation load is much lower than the European and U.S. standards.
- Although those certified as upper green buildings are included, there are actual cases exceeding a baseline.

Baseline [Wh/m2/year] Correlation between Baseline and Actual Energy Consumption

- Baseline vs. actual correlation is low.
- There is no actual energy control effect by raising and lowering the green building certification level.

Reviewing the latent heat-sensible heat separate air conditioning in Bangkok

General air conditioning 56,000 m² LEED Gold

Chilled beam air conditioning 22,000 m² LEED Platinum

Effect on indoor environment by setting temperature change General air-conditioned buildings

23°C 24°C 25°C

Increase of indoor temperature setting by chilled beam

General air conditioning

Increase of satisfaction of office workers by chilled beam

Energy conservation potential by desiccant outside air processing

Contents

- 1. CO₂ Emissions and Actual Energy Regulations of Buildings
- 2. Indoor Environment and Actual Energy Consumption of Buildings
- 3. Comparison of Climate Characteristics
- 4. Prediction of Reduced Environmental Load by Dissemination of ZEB Family
- 5. Summary

The weather conditions at each location in Southeast Asia were summarized for this analysis.

The following was referenced as meteorological data.

- EnergyPlus Weather Data (EPW) ²⁾
- DOE2 BIN data 3)

Location	Format	Latitude	Longitude
Singapore	EPW	1.37	103.98
Kuala Lumpur	EPW	3.12	101.55
Jakarta	BIN	-6.20	106.80
Bangkok	EPW	13.92	100.60
Hanoi	EPW	21.02	105.80
Kagoshima	EPW	31.57	130.55
Tokyo	EPW	36.18	140.42

Table 3-1 Summary of weather data

Fig. 3-1 Positional relationship of target points ⁴)

2) EnergyPlus: <u>https://energyplus.net</u>

3) DOE2: https://doe2.com

4) World map designed by and available for PowerPoint. Blank map downloaded free of charge: https://power-point-design.com/ppt-design/world-map-for-powerpoint/

Comparison of temperature, humidity and solar radiation by box plots

- The temperature is lower in Hanoi and Kagoshima than in other locations.
- Other than Kagoshima, the lowest temperature is 8°C or higher.
- The lowest temperature is particularly high in Kuala Lumpur and Singapore.
- The highest temperature in Bangkok and Hanoi is particularly high.

Fig. 3-3 Comparison of daily total global horizontal radiation

- In Kuala Lumpur, the minimum global horizontal radiation value is higher than in other locations.
- In Jakarta, the maximum global horizontal radiation value is lower than in other locations.
- In Singapore and Bangkok, the global horizontal radiation tends to be higher than in other locations.

Comparison of temperature, humidity and solar radiation by box plots

- The relative humidity tends to be higher in Kuala Lumpur, Singapore and Hanoi than in other locations.
- The lowest humidity in Kuala Lumpur and Singapore is higher than in other locations.

- The absolute humidity in Kagoshima tends to be lower than in other locations.
- In Jakarta, the maximum absolute humidity value is particularly high.
- In Singapore, the minimum absolute humidity value is particularly high.

Relationship of temperature, humidity and solar radiation with latitude

Fig. 3-6 Relationship between annual average/integrated value of meteorological factors and latitude

Relationship of temperature, humidity and solar radiation with latitude

Fig. 2-5 Relationship between annual average/integrated value of meteorological factors and latitude

Comparison of transition of monthly average temperature

Fig. 2-6 Monthly average temperature

- There is a temperature difference in Hanoi and Kagoshima from one month to another. In Hanoi, the temperature becomes higher than in other locations in July and August, and the temperature in Kagoshima also gets closer to other locations.
- The temperature in Jakarta, Kuala Lumpur and Singapore almost levels off, transitioning in a range of 26 to 29°C.
- In Bangkok, the temperature becomes higher in April, exceeding 30°C.

Comparison of transition of monthly average humidity

Fig. 2-7 Monthly average relative humidity and absolute humidity

- In Jakarta, both the relative humidity and absolute humidity become the lowest in August.
- In Bangkok, both the relative humidity and absolute humidity become the lowest in December.
- The absolute humidity almost levels off in Kuala Lumpur and Singapore.
- In Kagoshima, both the relative humidity and absolute humidity transition in the shape of an arch. In Hanoi, only the absolute humidity transitions in the shape of an arch.

Comparison of transition of monthly integrated solar radiation

Fig. 2-7 Monthly integrated solar radiation

- In Hanoi and Kagoshima, global horizontal radiation transitions lower than in other locations from November to March, but higher than in other locations from July to August.
- In Bangkok, global horizontal radiation stands out from the rest in March.

Comparison of transition of monthly integrated solar radiation

Fig. 3-9 Monthly integrated solar radiation

- In Hanoi and Kagoshima, global horizontal radiation transitions lower than in other locations from November to March, but higher than in other locations from July to August.
- In Bangkok, global horizontal radiation stands out from the rest in March.
- In Kuala Lumpur and Singapore, direct normal radiation transitions lower than in other locations, but diffuse horizontal radiation transitions higher than in other locations.
- In Jakarta, direct normal radiation transitions lower than in other locations.

Comparison of transition of solar radiation by country

Fig. 2-8 Monthly integrated solar radiation by country

- In Jakarta, direct normal radiation is higher than diffuse solar radiation throughout the year.
- In Kuala Lumpur and Singapore, diffuse solar radiation is higher than direct normal radiation throughout the year, but global horizontal radiation almost levels off.
- In Bangkok, diffuse solar radiation is higher than direct normal radiation from May to October, and global horizontal radiation stands out at 655 MJ/m2 in March.
- In Hanoi, global horizontal radiation is low from January to February and direct normal radiation becomes high from September to October.
- In Kagoshima, global horizontal radiation and direct normal radiation become low in June, but global horizontal radiation becomes the highest in July.

Contents

- 1. CO₂ Emissions and Actual Energy Regulations of Buildings
- 2. Indoor Environment and Actual Energy Consumption of Buildings
- 3. Comparison of Climate Characteristics
- 4. Prediction of Reduced Environmental Load by Dissemination of ZEB Family
- 5. Summary

The following outlines the input conditions for the reference model (Base).

With this reference model, calculate the changes of CO₂ emissions and heat load resulting from the ZEB measures.

List of main parameters of reference model Base ¹⁴⁾

Model summary	
Weather data	Singapore (EPW)
People	0.2person/m ²
People load	132W/person
Light	9.68W/m ²
Equipment	9.68W/m ²
Ventilation	1.5/h
Area	1000m ²
Rentable floor area ratio	0.7
Ceiling height	4m
WWR	0.7

14) Yukiko MABUCHI, Masayuki ICHINOSE, Nobuki MATSUI, Masayuki OGATA, Alkhalaf Haitham

"Proposal of air conditioning method based on actual usage at office buildings in Tropic Asia"

Convention (Fukushima) of the Society of Heating, Air-Conditioning and Sanitary Engineers of Japan, Technical Papers of Annual Meeting, Pages 241 to 244. (Sep. 2021)

List of specifications for building frame

Construction

	Ceiling	mm	Roof	mm	Ext. wall	mm	Floor	mm	Int. wall	mm
Outside	Carpet	7	Virtual Insulation	-	Tile	8	Virtual Insulation	-	Gypsum board	12
	Concrete25	25	Roof membrane	9.5	Mortar	20	Rock wool	15	Air gap	-
	Air gap	-	Roof insulation	169.3	Concrete150	150	Air gap	-	Gypsum board	12
	Concrete245	245	Metal decking	1.5	Sprayed rigid urethane foam	25	Concrete245	245		
	Air gap	-			Air gap	-	Air gap	-		
	Rock wool	15			Gypsum board	12	Concrete25	25		
Inside							Carpet	7		

Sprayed rigid urethane foam was designed 50 mm thick for "ZEB wall", a model with improved outer wall overall coefficient.

The following 6 types of ZEB measures were considered.

List of main parameters of ZEB reference model and ZEB measures applied model

Energy conservation policy	Reference model (Base)	ZEB measures applied model (ZEB)
Utilization of daylight (Daylight)	No	Yes (500 lx)
Overall coefficient of glass (Glass)	5.0 W/(m ² •K) (High-performance heat reflecting glass) ¹⁵⁾	1.5 W/(m²•K) (Low-e double-glazed glass) ¹⁵⁾
Depth of eaves (Eaves)	0 mm	800 mm
Air conditioning setting temperature (SP26)	23°C	26°C
Outer wall overall coefficient (Wall)	0.83 W/(m²•K)	0.5 W/(m²•K)
Airtightness/ventilation (Vent)	8/h	1/h

15) Central Glass, Optical Performance and Thermal Performance of Sheet Glasses https://www.asahiglassplaza.net/catalogue/sougou_gijutsu/0004a.pdf, Accessed on 2022/2/24

CO₂ emission reduction effects by single and full introduction of ZEB measures

Heat load reduction effects by single and full introduction of ZEB measures

• Secondary energy consumption cannot be greatly reduced by simply changing a window area ratio.

• A reduction of secondary energy consumption by changing the air-conditioning setting temperature and outside air control is greater than that by other measures, but the SLE level cannot be reached even by improving the COP.

 \rightarrow There is a limit to a single measure.

Secondary energy consumption of the model (ZEB_All) subjected to all measures can reach the SLE level at $COP \ge 2.8$.

Effect on energy consumption by ZEB measures for each air conditioning system COP and comparison with SLE Targeting 5 locations in Southeast Asia plus Kagoshima and Tokyo, calculate the changes of CO₂ emissions and heat load resulting from the post-measure model (ZEB_All).

List of main parameters of ZEB measures applied model (ZEB_AII)¹⁴

Model summary		
Weather data	7 points	
People	0.2person/m ²	
People load	132W/person	
Light	9.68W/m ²	
Equipment	9.68W/m ²	
Ventilation	1.5/h	
Area	1000m ²	~2×700 36900
Rentable floor area ratio	0.7	<i>•••</i>
Ceiling height	4m	
WWR	0.7	Fig. 5-5 Appearance of ZEB

14) Yukiko MABUCHI, Masayuki ICHINOSE, Nobuki MATSUI, Masayuki OGATA, Alkhalaf Haitham

"Proposal of air conditioning method based on actual usage at office buildings in Tropic Asia"

Convention (Fukushima) of the Society of Heating, Air-Conditioning and Sanitary Engineers of Japan, Technical Papers of Annual Meeting, Pages 241 to 244. (Sep. 2021)

(1) Change of CO₂ emissions

CO₂ emission reduction effect by ZEB measures for Base model by city

In case the energy conservation measures are taken, CO_2 emissions are expected to be reduced by about 58.1% to 62.7% from when they are not taken.

Heat load reduction effect by ZEB measures for Base mode by city

In Hanoi, a sensible heat load by heating was noticed. In case the energy conservation measures are taken, the heat load is expected to be reduced by about 70.4% to 72.1% from when they are not taken.

Targeted secondary energy in each Energy Conservation Countermeasure

(3) SLE achievement rate for each case

- Secondary energy consumption in Kagoshima and Tokyo are always at the Plutinum level.
- Not reaching even the Gold Plus level at COP < 1.85.
- Achieved the Gold Plus level at $COP \ge 2.16$.
- Achieved the Plutinum level at $COP \ge 2.40$.
- Achieved the SLE level at $COP \ge 2.93$.

Effect on energy consumption by ZEB measures by city and air conditioning system COP and comparison with SLE

Targeting 5 locations in Southeast Asia plus Kagoshima and Tokyo, calculate the changes of CO₂ emissions and heat load when the window area ratio of ZEB measures applied model (ZEB_AII) is changed.

List of main parameters of ZEB measures applied model (ZEB_AII)¹⁴

Model summary		
Weather data	7 points	
People	0.2person/m ²	
People load	132W/person	
Light	9.68W/m ²	
Equipment	9.68W/m ²	
Ventilation	1.5/h	
Area	1000m ²	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Rentable floor area ratio	0.7	
Ceiling height	4m	
WWR	0.1~0.7	Fig. 5-5 Appearance of ZEB

14) Yukiko MABUCHI, Masayuki ICHINOSE, Nobuki MATSUI, Masayuki OGATA, Alkhalaf Haitham

"Proposal of air conditioning method based on actual usage at office buildings in Tropic Asia"

Convention (Fukushima) of the Society of Heating, Air-Conditioning and Sanitary Engineers of Japan, Technical Papers of Annual Meeting, Pages 241 to 244. (Sep. 2021)

(1) Change of CO₂ emissions

CO₂ emission reduction effect based on WWR by city

- A CO₂ emission reduction volume does not change greatly, even if the window area ratio is reduced for the ZEB measures applied model (ZEB_AII).
- In Kagoshima and Tokyo, the smaller window area ratio lowers a CO₂ emission reduction rate.

(2) Change of heat load

Heat load reduction effect by ZEB measures for Base model by city

 Even if the window area ratio is reduced for the ZEB measures applied model (ZEB_All), the heat load is not lowered greatly.

Energy consumption reduction effect based on WWR by city

generation efficiency.

4. Prediction of Reduced Environmental Load by Dissemination of ZEB Family

Japan

Contents

- 1. CO₂ Emissions and Actual Energy Regulations of Buildings
- 2. Indoor Environment and Actual Energy Consumption of Buildings
- 3. Comparison of Climate Characteristics
- 4. Prediction of Reduced Environmental Load by Dissemination of ZEB Family
- 5. Summary

■ CO₂ emission trends

- CO₂ emissions seem to have peaked in Singapore, Malaysia and Thailand, but they are still high in the rest of ASEAN countries.
- CO₂ emissions are expected to continuously increase in Indonesia and Vietnam.
- Equivalent to Japan, CO₂ emission per capita is high in Singapore and Malaysia, followed by Thailand, Vietnam and Indonesia, where per-capita emission is below the half that level, but its increase rate is high.
- Currently, total CO₂ emissions in Japan are close to 5 to 10 times higher than in the ASEAN countries. If they transition down the road as is now, CO₂ emissions in Japan will remain high even in 2030 and 2050.
- Once ZEB is disseminated, CO₂ emissions in Japan may be reduced to as low as in the ASEAN countries in around 2030.

- Meteorological characteristics
- Meteorological characteristics differ even in Southeast Asia. A cooling load is the highest in Bangkok.
- Energy conservation standards
- In the secondary energy standards, the highest-level settings are equivalent to those in Japan, but the lowest-level ones differ greatly.
- The CO₂ emission standards are the strictest in Japan. The emission setting in Indonesia stands out from the rest of the ASEAN countries.
- Effects of ZEB measures
- The effects are low even if the window area ratio is greatly regulated.
- In case the single ZEB measures are taken, high effects are noticed in air conditioning setting temperature, optimization of outside air load processing and improvement of air conditioning system COP.
- To reach the SLE level, it is essential to apply composite measures. CO₂ emissions can be reduced by 60% in the ASEAN countries (40% reduction in Tokyo).
- CO₂ reduction potential by ZEB is very high.
- Energy conservation alone is not enough to realize carbon neutrality. Introduction of renewable energy and synergy with other industries are essential.